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Analytic elimination of the two magnetic surface components of the displacement vector 
permits the normal ideal MHD equations to be reduced to a scalar form. A Galerkin 
procedure, similar to that used in the PEST codes, is implemented to determine the normal 
modes computationally. The method retains the efficient stability capabilities of the PEST 2 
energy principle code, while allowing computation of the normal mode frequencies and eigen- 
functions, if desired. The procedure is illustrated by comparison with earlier versions of PEST 
and by application to tilting modes in spheromaks, and to stable discrete Alfven waves in 
tokamak geometry. 0 1986 Academic Press, Inc. 

1. INTRODUCTION 

Ideal MHD linear stability codes [l-3] have played an important role in helping 
to assess the stability properties of axisymmetric toroidal plasma configurations. As 
practical tools they are used on a daily basis at major tokamak laboratories to aid 
in the design of new experiments and in the analysis of experimental data. Since 
these applications frequently involve parameter surveys and, therefore, the running 
of many cases, a number of different versions of the codes exist. These take advan- 
tage of various optimizations that can be made when the interest is focused on 
specific stability issues. Additional improvements have occurred because the 
increased understanding of the nature of the instabilities, much of which has come 
from the computational studies, has led to various improvements in the numerical 
methods. 

The necessity of carrying out some of these enhancements led to the development 
of PEST 2 [4], a code designed primarily to enable rapid computation of stability 
boundaries in parameter studies. This was achieved by the reduction of 6 W to a 
scalar form involving only one component of the displacement vector, 5, thereby 
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reducing the size of the matrix eigenvalue problem which has to be solved 
numerically to determine stability. In addition to the factor of 10-50 reduction 
obtained in typical execution times, improvements in the numerical representation 
of 5 greatly improved the convergence of the representation, so that for normal 
operation the time-consuming convergence studies can frequently be forgone [S]. 

While this procedure, which is basically a numerical treatment of the Energy 
Principle [6], is well suited for studying many stability issues, it has a major 
shortcoming in that it does not provide accurate estimates for the growth rates or 
eigenfunctions of the unstable normal modes. These can be valuable in attempting 
to make comparisons with experimental measurements and in assessing the need to 
include additional physics effects to the MHD model. 

In the PEST 2 approach, the potential energy functional, S W(k*, g), was 
minimized subject to the constraint j dzg*. p. 5 = 1, with tensor density, p - p($) 
Vr,N$/lV+l’, rather than just the usual scalar, p($). Close to marginal stability, 
comparisons with the PEST 1 code showed that this procedure often gave 
approximations to the component 5. V$ with many of the correct qualitative 
features of the true solution. However, the eigenvalue estimate, o2 = extremum 
SW*, U/j WG* * P * 5), h as no relation (other than the sign) between the two 
norms. 

Since many of the instabilities of interest have the property that 5. B and V. CL 
are very small, a “test function” approximation to o2 can be easily obtained from 
the PEST 2 calculation of 5. V$. The approximation V. kL x 0 is used to find the 
B x V$ component of 5, which is then added into an improved estimate of the 
kinetic energy form, ~drl~L/‘. Then w2x6W(r$, tti)/Jdr ~15~1~. An implemen- 
tation of this technique showed that, for a variety of straightforward instabilities, 
growth rate estimates with errors of the order of l&20% could be obtained. 
However, since the approximations are not good away from marginal stability or 
for small aspect ratio cases (where 5. B and V + G1 are not necessarily small), such 
an approach has only limited value. Moreover, since the calculation of 6 W is done 
with considerably more accuracy, it is not at all aesthetically pleasing to have to 
rely on such an approximation. 

The PEST 2 approach can, however, be straighforwardly generalized to obtain 
nonlinear eigenvalue formulation of the complete normal mode equations, which is 
of similar scalar form involving only the single component, 5 - V$, of the dis- 
placement vector. The surface components are eliminated analytically prior to the 
introduction of discretization, as opposed to previous methods which eliminate 
these components by utilizing sparse matrix techniques in solving A * x = 02B . x 
after the full matrices are computed [22]. The generalization of PEST 2 is the sub- 
ject of this report. We briefly describe the algebra involved and present the eigen- 
value problem in the next section. In Section 3 a discussion of the numerical 
methods used to solve the equations is presented. Examples, illustrating the techni- 
que, are given in Section 4. 
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2. FORMULATION 

The procedure we follow to reduce the normal mode equations to an eigenvalue 
problem involving only one dependent variable is analogous to that carried out in 
cylindrically symmetic systems, where the components re, 5, are eliminated to give 
a second-order, differential equation for 5,[7]. The algebraic steps are, however, 
more complicated because of the coupling of different poloidal harmonics which 
occurs in toroidal geometry. The procedure depends on the fact that the two 
magnetic surface components of 5 can be eliminated surface-by-surface, involving 
only the inversion of surface operators, since in the appropriate coordinates no 
radial derivatives of these components occur in the original Euler equations. 
Because of this, it is essential to employ a flux coordinate system and to adopt an 
appropriate decomposition of 5 to obtain a form useful for numerical work. 

The basic equations we begin with are the linearized normal mode equations of 
ideal MHD [6] 

- 02pS = F(S), (1) 

where the displacement 6(x, t) = k(x) exp(iot), 

F=[Vx(Q+t,Jxn)]xB-n[Jxn.(Q+t,Jxn)] 

+2UIV11/12n5,+V(r~V.5), 

Q=Vx(kxB), n = WllWL 5, = 5. n, J=VxB 

(2) 

(3) 

and 

(4) 

with cr= J. B/B2 and k, = B x se [B/B* V(B/B)]/B2. In Eqs. (2)-(4) we adopt the 
generalized PEST coordinate system [4] (IL, 8, 5) with Jacobian, f = 
IV$xVO*V~l-‘. Then 

(5) 

with s-Vi - qV8. The safety factor, q($), is given by 

(6) 

where g(+) = x2B * V#, and ( ) denotes a surface average. The generalized toroidal 
angle [ is related to the usual angle 4 by 5 = 4 - qd($, 0) and satisfies 

a, @tiv 0) = kuqx2) - 1. (7) 

In Eq. (4), and throughout, a prime denotes differentiation with respect to II/. 
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Following previous work, we write 

4 = l*B x s/B2 + it”B x Vll//B2 + irbs x Vt+!t/B2, (8) 

so that the two surface components of Eq. (1) (obtained by taking the scalar 
products with B and B x V@) can be written 

- io2p~b = B. V(ypV .t) (9) 

and 

-w2p[ilV1(112~s+(s.V$)5~]= -B2V+.[Vx(Q+&,Jxn)] 

+BxV+.V(ypV.g). (10) 

To take advantage of algebraic simplifications which occur in the detailed analysis, 
we introduce new variables, 

and 

cb = (itb/yB2 + V$. V8<*/x2B2) exp(inqd), 

F” = [tS + i(qS)‘P] exp(inqb), 

rti = 5” exp(inqd), (11) 

and solve Eqs. (9) and (10) to express r”, 5” in terms of p. 
The algebraic steps are straightforward, but tedious. In the following we present 

the results for the case of an axisymmetric toroidal equilibrium, which allows some 
simplification since we can write s(x) = k($, t?) exp( -ino and consider each 
toroidal harmonic, n, separately. The procedure can obviously be generalized to 
any configuration with nested flux surfaces. We find that Eq. (9) can be written in 
the form, 

frop=q$+“J* 

where the operators rri are 

no = - ,oco2f2B2/(yp) + TC, 

71= ingfo/x2 + n2g2y2/x4 + inqS,, + (2ingf/x2) a, - asp a,%, 
n, = in’g$/x’ - na, - ing/(fB2), 

and 

(12) 

(13) 

(14) 

(15) 

n2 = - ~co~J~V$. VO/(x2yp) - ingf’/x2 + a,f’/f - (ingy/x’) alL + a,a,. (16) 

Similarly, Eq. (10) yields 

r,p=r,~“+l-,p (17) 



with 

and 
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~O=i~V~~2(p~2/B2-n2/~2)+i~-1 LJex2$-’ a,-iypn21V$1*/(x2B2) 

- ypngl(fB*) a0 - irlg/(fB2)9 (18) 

c= -YpYPg~--lae~Plae~-i~g~esg/~+(~~(lv~l*-g*)/X*)ag 

+ W+l* fel(x’f) + ~2g$lW12/~41/B2~ (19) 

r2 = po*ygV$ * VfI/(x*B’) - in(x*p’ + gg’)/x* - n’g$T$. V9Jx4 

- inyp$‘lV$I*/($x*B*) - (inlV$l’(l + yp/B*)/x’) a, 

- WV. WX*) a, - Ypd(2W a,f/~ - Ypd(fB*) ad, 

- W/f*) adfix*) a, +b9-uw498/X*i~. (20) 

In these expressions we have adopted the notation that subscripts with respect to 0 
represent O-derivatives of equilibrium quantities; thus, for example, J$ = a,%. Also, 
all explicit JI and 8 derivatives act on whatever quantities appear to the right. 

The formal solution of Eqs. (12) and (17) gives 

~=(fo-r17(01,,)-l(rl”o’n,+r,)F~~xF*, (21) 

and 

Fb=Kg’(71*x+71*)~~~~~*. (22) 

Inspection of the explicit forms for these operators show that derivatives with 
respect to $ occur only in 7r2 and f,, so that % and rb can be formally eliminated 
by inverting operators which involve only derivatives in the magnetic surfaces. 

To proceed further, we follow the variational formulation of the normal mode 
equations; i.e., we extremize the quadratic form [4] 

cW=l ~~(lQ+~“JxV~/lV~l*I*+ypIV~~~*-2U~~~/*)+j dzlVxAl*, (23) 
P ” 

where A is the vector potential for the perturbed vacuum magnetic field, subject to 
the norm ~ppl~12dr=1. From Eqs.(8) and (11) we find 

ItI*= {[l +~~~~(V~~V~)~/X~B~]/~V~~~~~~~~~-~~~V~~V~(~~*~-~*~~)/X~B~ 

+ lW121r”12/B2 + l5bl2/B2, (24) 

IQ + <*J x V~/lV~l*l*= lA,5’?*/1W1*+ IA2~~12/B21V~12+ IAd~l*/B* (25) 

with 
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+ ilV$(‘exp( -inqS) 

d 
4d exp@@) 

(26) 

+w2g 

x2 
exp( - inqd) x exp( inq6) 

(27) - &‘P + gg’) p 1 x2 ’ 

A,(@= i[ (I/x2)' - g2-- w * ve 
/ 

in(qS)’ B2 + inq xz - @'P' + gg') _ p a 

X2 1 $ 
- (V$. VO/x2) 8, - ig[exp(~inq’)’ deX exp(inq8) 

(28) 

and 

(29) 

Thus, since the perturbed vacuum potential energy contribution is given in terms of 
tti on the plasma-vacuum interface (l), the quadratic forms can be written entirely 
in terms of rti by using Eqs. (21) and (22) for r and F. The final result can be 
expressed schematically as 

w2K(<“, plw2) =dw@*, <J11w2), (30) 

where K and 6 W are quadratic forms in t$, each explicitly involving the eigenvalue 
w2. The eigenvalue problem, which is obtained after extremizing with respect to <$, 
is therefore nonlinear in w2, and its numerical solution must be found by iteration. 

3. NUMERICAL METHODS 

3.1. Overview 

The eigenvalue problem corresponding to Eq. (30) is solved by a straightforward 
generalization of the Galerkin method used in previous PEST codes [ 1,4]. We 
begin by introducing the mixed finite-element Fourier expansion, 
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IU M 
P($, 8 0 = C C ~mmn~,(lcI) evCiW-d)l, 

I= -IL1 m=l 
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(31) 

into the quadratic forms associated with Eq. (30). The weak form of the normal 
mode equations can then be written as the generalized matrix eigenvalue problem, 

Y%dm(~*) hl= ~2K%ih(~2) L (32) 

where the matrix elements of W(o*) and K(o*) are very complicated expressions 
obtained by following through the analysis of the last section. Each can be written 
in the form, 

where the matrices W, Y, and Z are functions of $ and depend in a known way on 
o*. These subsidiary matrices are evaluated surface-by-surface in the calculation, 
and involve the explicit inversion of the operators no and [f, - rrn;lnr] of 
Eqs. (21) and (22) in the Fourier space corresponding to the coordinate 8. The final 
result is too tedious to present in full detail here; instead we continue this section by 
briefly describing some of the most important steps in the calculation. 

3.2. Elimination of p, $ 

The elimination of p and $ proceeds by finding the Fourier matrix represen- 
tation of the operators x and @ of Eqs. (21) and (22). We introduce the bracket 
notation, 

(34) 

so that 

These expressions are evaluated in a straightforward manner and attention need 
only be given to two complications, viz., the treatment of the convolutions that 
occur in evaluating operator products and, second, the complications which occur 
because n2 and r2 explicitly involve +-derivatives. 

To illustrate the convolution treatment we consider the evaluation of Eq. (35). 
This can be written formally as the infinite matrix product, 

XI’/= (I’I(ro-rl”~l”l)-lI k)(kp-,7517l*+r,l l), (37) 
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TABLE I 

Convergence of Convolution Truncation for the 
Equilibrium and Eigenmode Considered in Section 4.1 

L* 

15 0.9246489 
16 0.9246235 
17 0.9246209 
20 0.9246227 
25 0.9246227 

Note. The other parameters were; PEST-0 coor- 
dinates, M= 48 and L = 15. The growth rate is nor- 
malized to the poloidal Alfvkn frequency at the plasma 
surface. 

where Ik)(kj = I, the identity operator, and summation convention is assumed. 
Numerically, we truncate the infinite product, taking L* terms, so that I is 
approximated by 

(38) 

In the calculations we let L* be an additional input parameter and, for fixed L, 
varied it until the results were satisfactorily converged. For every case we con- 
sidered, taking L < L* d L + 5 was sufficient. This is illustrated in Table I where we 
present some convergence results for analytic equilibrium studies in Ref. [S]. With 
this prescription for evaluating matrix products, the remaining steps are 
straightforward; considering the first term of Eq. (37), 

(rl (ro-r,x,’ ?rl)-’ I/k) = (rl ro-r,R,‘n, I/c-’ 

which can be evaluated from the expressions given in Eqs. (13), (14), (15), (18), 
and (19). 

In the preceding discussion we have assumed that all the operators remain boun- 
ded, which they do, at least almost everywhere in the domain of CD’. The exceptions 
are at the set of values of CD* which are eigenvalues of the operators no and r,. This 
set excludes all the eigenvalues of the normal modes (including the continuous spec- 
tra), except possibly marginally stable axisymmetric perturbations for which a 
proper treatment would have to follow the treatment in the Appendix of Ref. 4. For 
a given value of L, these 2(2L + 1) values of CO* are the toroidal analogues of those 
which separate Sturmian from anti-Sturmian behavior of the spectrum of the cylin- 
drical, diffuse linear pinch [8]. As in the cylindrical problem, it is our experience 
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that the numerical solution, which involves iteration in o*, is for all practical pur- 
poses oblivious of these possible difficulties. 

The second issue to comment on is the treatment of the JI-derivatives in x12 and 
r2. These give rise to terms in Y and Z of Eq. (33), coming explicitly from the 
elimination of p and p, as can be seen, for example, in the second term of Eq. (37). 
They are handled in a simple manner by splitting each of the operators as, for 
example, 

712=712+e2aG, (39) 

where it* and jt2 do not involve $-derivatives. Then 

x=x+3,, @=$+&a, (40) 
with 

~=x,‘(7T1~+~*), ~=7c,‘(n1~+fi,). (41) 

Thus, corresponding to the form Eq. (31) chosen for the representation of t$, the 
two surface components can be expressed as 

r”(4k Rl) = C (TLu, + FL&) expCi(le - 4)1, (42) 
h 

where 
FL = Xrr5rm FL = 1?11’, 5r’m (43) 

with similar forms for p. The terms involving barred (twiddled) quantities even- 
tually contribute to W(Z) matrix elements in Eq. (33). 

As in previous work we have employed piecewise linear finite elements for the 
u,($), which are the lowest order elements allowed for tti, since it appears differen- 
tiated once with respect to $ in Eq. (23). Lower order elements (the & are 
Heaviside functions) are permitted for the two surface quantities, since no I& 
derivatives of these occur. It is interesting to note that, for finite M, Eq. (42) is dis- 
tinctly different from previous methods [9, lo] in which Eq. (23) was varied with 
respect to each of the three components of 5, and in which only the terms 
corresponding to Em were included in the representation for 5” and rb. Since, when 
CD* is an exact normal mode frequency, Eq. (42) is the discretization corresponding 
to Eq. (31), pollution of the spectrum [9] cannot be a serious problem in this con- 
strained minimization. On the other hand, with respect to the convergence proper- 
ties with the numerical parameter M, this method has no particular advantage over 
the previous schemes; both are O(M-*) methods. 

3.3. Iteration in CO* 

Since the matrix elements in Eq. (32) depend on w*, it is necessary to iterate to 
obtain the normal mode frequencies. To do this we use the simplest of schemes, 

Yw;) - 5 = $+ 1 W;) .5, p = 0, 1, 2 )...) (4) 

and continue, until loi+ 1 --$I <E(o$, with E an appropriate small number. To 
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TABLE II 

Convergence of the Eigenvalue Iteration for 
the Same Case as Table I 

0 0.0 
1 0.92462 
2 0.76863 
3 0.77502 
4 0.77480 
5 0.77480 

commence the iteration, o$ must be chosen. Often, as for example when carrying 
out analysis of a sequence of slightly different equilibria, some prior knowledge of 
o2 will exist. If not, and the interest is in the issue of the stability of the equilibrium 
configuration, it is useful to take 0; = 0. Then, this first step is essentially identical 
to the original PEST 2 formulation, the matrix elements representing 6 W must be 
the same, and the sign of c$ determines stability. Since the kinetic energy norm 
used here includes terms involving 5” and tb, both of which are generally nonzero, 
the value of 0: will not be the same as that obtained from PEST 2. However, in the 
sense of Eq. (44), it is an approximation to the normal mode frequency. An example 
of the convergence properties of Eq. (44) is shown in Table II. It is seen that con- 
vergence can be quite rapid, typically requiring 2-3 steps to give 3-4 ligures 
accuracy, which is about the maximum one should aim for with numerically deter- 
mined equilibria. 

This iteration is, of course, expensive computationally, since Eqs. (21) and (22) 
must be resolved at each stage. While many of the matrices involved can be saved 
from previous iteration steps, most of the computational time is involved in the sur- 
face-by-surface inversions for x and @, and in the present coding of this method we 
have not gone to this effort. Consequently, the execution times scale comparably to 
the PEST 1 procedure. For practical applications, the present advantages lie in the 
fact that the PEST 2 formulation gives more accurate results for smaller values of 
M and L than with PEST 1. For example, for some internal kink mode 
calculations, the value of M for which instability is first detected can be typically 
2-3 times smaller with this new procedure. 

3.4. Summary of the Numerical Steps 

The implementation of the steps described in the previous sections closely follows 
that of the PEST 2 code. We begin with a numerical equilibrium in flux coor- 
dinates, mapped onto an appropriate equally spaced $, 6 mesh, typically with 97 
surfaces and 128 &grid points. We select values of ikf, L, and L* and remap the 
equilibrium to the new II/ mesh, which may be nonequally spaced, if desired. With 
piecewise linear elements the new $ mesh has 2M+ 1 grid points. 



NORMAL MODEIDEALMHDEQUATIONS 265 

The calculation proceeds by computing the matrices W, Y, and 2 of Eq. (33) on 
each $ grid surface. This involves constructing the K and r matrices of Section 2, 
inverting the appropriate combinations to obtain x and @, and then taking the 
appropriate Fourier transforms (using FFT routines) of the expressions in 
Eqs. (24k(29). The W and K matrices of Eq. (32) are then obtained by carrying 
out the integrations over the radial finite elements by numerical quadrature 
(Simpson’s rule). These matrices are block tridiagonal, consisting of (M + 1) blocks 
each of rank (2L + 1). The calculation of perturbed vacuum magnetic energy is 
identical to previous work [4] and lead to contributions to the elements W,.,,.,. 
The eigenvalues, C$ + 1, of Eq. (44) are found by inverse iteration, using wz as the 
accelerating parameter in the eigenvalue shift. 

When the eigenvalue iteration is converged to the required accuracy, Eqs. (21) 
and (22) [or more precisely Eq. (43) and the equivalent form for TJ are used to 
construct the eigenvector 5. For this purpose, the matrices 1, i, 8, and 6 are saved 
in disk files when they are computed, during the calculation of the matrix elements. 

Because of the modular structure of the PEST code, while the algebra associated 
with this procedure is more tedious than with PEST 2, the actual coding changes 
are quite modest. They amount essentially to the replacement of one subroutine of 
about 300 statements with new coding of about 1000 lines. Several additional arrays 
used as working storage to hold temporarily the rc and r matrices slightly increased 
the memory requirements. 

4. APPLICATION 

In this section we give several examples to show the usefulness of these 
modifications to the PEST 2 code. First, we consider two cases which illustrate the 
convergence properties and allow a comparison with PEST 1. These are a simple 
external kink instability, which has been studied previously [S] when comparisons 
were made between various stability codes, and an internal kink mode, which 
provides a more difficult test because the growth rate is very small and the mode is 
highly localized. We then go on to compute a tilting mode in a spheromak con- 
figuration, because it was the desire to obtain growth rates for comparison with the 
Proto-Sl experiment which originally motivated this work. Finally, we find a 
stable, discrete shear Alfvtn wave to illustrate that the techniques developed here 
are not restricted to instability studies. 

4.1. Tokamak External Kink Mode 

We consider the simple analytic equilibrium studied in Ref. [S], a small aspect 
ratio, elliptic cross-sectional configuration specified by 

Y= 
1 

2ER2q(0) 
x2z2 + $ (x2 - R2)2 1 , (45) 
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TABLE III 

Convergence with Number of Finite Elements (M) and Fourier Modes (L) for the External Kink Mode 
of Section 4.1 

LIM 24 

a. PEST &coordinate Q$ = 0.1155 

10 0.7679 
15 0.7730 
20 0.7731 

36 48 

0.1693 0.7698 
0.1744 0.7748 
0.1144 0.1149 

b. Equal arc d-coordinate a’, = 0.7757 

10 0.7723 
15 0.1122 
20 0.1122 

Note. 02, is the extrapolated value. 

0.7144 0.7750 
0.7742 0.7749 
0.7742 0.1149 

with R = 1, q(0) = 1.2, q(s) = 2.09, E = 2, and E = f. With no external conducting 
wall, so that the plasma torus is surrounded by an infinite vacuum region, the n = 1 
external kink mode is unstable, and its growth rate [measured in units of the 
poloidal Alfvtn time at the plasma surface, 0: = pq2(s) R2/Bi] was computed 
previously by the PEST 1 and ERATO codes as 0.75 and 0.78, respectively [S]. 
Here we repeat the calculations using PEST and equal arc length B-coordinates, 
and present the results in Table III. For each case we took L* = 51 (see Table I), 
and set E, the relative error between successive iterates in Eq. (44), to 10m6 (see 
Table II). Table III presents the results for a set of three different radial meshes (M) 
and three different sets of Fourier modes (-L < I< L). For both coordinate 
systems we see that the estimates are essentially converged out in 1 with L = 15; the 
equal arc system (Table IIIb) is extremely accurate even with L = 10, while the 
PEST coordinate system begins to display some departure at this point. Both 
systems have a l/M2 variation with the number of finite elements, and 
extrapolation to infinity gives w2 = 0.7755 and 0.7757 [for IIIa and IIIb, respec- 
tively], in good agreement with the previous estimates. 

4.2. Tokamak Internal Kink Mode 

The internal I= 1, n = 1 ideal MHD mode is usually unstable in tokamak con- 
figurations when a q = 1 surface lies in the plasma region and /I is finite [ 111. This 
mode has a small growth rate of typically several orders of magnitude smaller than 
the external kinks. Its eigenfunction is localized inside the q = 1 surface and 
decreases rapidly to zero outside. Because of the need to resolve this region 
accurately, studying such an instability provides a good test for a stability code. 
The mode is particularly difficult to determine near to the points of marginal 
stability, and in these regions grid packing near the q = 1 surface and the addition 
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FIG. 1. Growth rate of the internal kink versus q(0) calculated using PEST 1, original PEST 2, new 
PEST 2, and new PEST 2 converged to M -+ co. 

of specially tailored finite elements have been used to obtain very accurate results 
with PEST 2 [12]. The purpose here is not to address this aspect specifically, but 
to show that with this new version of PEST 2 it is possible to compute the growth 
rate and eigenfunction as well. 

We consider an aspect ratio 3 toroidal equilibrium with circular plasma surface, 
computed from a flux coordinate equilibrium code, using the profiles p($) = 
~~(1 -ICI”‘), q(rl/) = qo(l + $9 with a, = 1.1, and a2 = 1.5. The parameters p. and q. 
are such that p, = 2po( p)/Z$ = 1.25. A sequence of equilibria with constant b, can 
be obtained by scaling the vacuum toroidal field to alter q(0). We examine the 
stability of n = 1 internal modes with q(0) varying between 0.63 and 0.98, and 
present the results in Fig. 1. We give four sets of results; PEST 1 calculations with 
200 radial elements, the new PEST 2 resuls with M = 200 and no iterating on the 
eigenvalue (i.e., similar to the original PEST 2), and results after iterating with 
PEST 2, using 96 elements and after extrapolating to infinity. In all cases the mesh 
was uniformally spaced in the radial coordinate $, and the PEST 8 angle was used 
with -4 d 1 d 13. In the PEST 2 calculations L* = 16. The poloidal projection of 
the displacement vector 5 for q(0) = 0.9 computed from the new PEST 2 code is 
shown in Fig. 2. 

Several comments can be made from the results shown in Fig. 1. First it is clear 
that with respect to determining the instability, both PEST 2 codes are considerably 
more accurate than PEST 1, which is expensive to run computationally (N 5 min 
CRAY I time) with 200 elements. This is especially true when the q = 1 surface lies 
close to the magnetic axis (q(0) x l), because the equally spaced $ mesh in PEST 1 
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FIG. 2. Poloidal projection of the displacement vector, 5, for the internal kink with q(0) = 0.9, com- 
puted using the new PEST 2. 

tends to weight regions near the plasma surface more heavily than near the axis. 
However, it can be seen that PEST 1 gives reasonable results when the q = 1 surface 
lies further out towards the plasma surface. Even with 200 elements the PEST 1 
code has difficulty finding instability, except where the growth rate is relatively 
large. With M< 200 it is also difficult to carry out a reliable extrapolation to the 
limit procedure, since the region where the errors scale as l/M* has not been 
reached. PEST 2 does not suffer these problems, except very close to the marginal 
points. By comparing the results near to the marginal point for the extrapolated 
curve and the results obtained by running in the original PEST 2 mode, we see that 
these can be accurately evaluated with M= 200. With M= 200 the new code 
follows the converged curve over most of the range with an error ~5 % of the 
maximum growth rate. Thus, except near the marginal points, convergence studies 
are not really essential for many applications. 

4.3. Spheromak Tilting Mode 

The tilting mode was predicted analytically for force-free spherical and near- 
spherical spheromaks [ 131 and is observed experimentally [14]. Its presence is 
generally found to be highly destructive; therefore, a thorough understanding of the 
mode is required. The PEST 1 code has difficulty with small aspect ratio (E + 1) 
spheromak geometry which is alleviated in PEST 2 by switching from PEST 8 coor- 
dinates to equal arc 0 coordinates and using a different represetation of 5. PEST 2 
has been used to examine the stable points of the tilting and shifting modes for dif- 
ferent shapes with and without nearby conducting walls [15]. However PEST 2’s 
lack of physically meaningful growth rates have made comparison with experimen- 
tal results difficult. The new formulation presented here allows accurate deter- 
mination of these growth rates. 

For this particular example we have numerically generated equilibrium with a 
shape described by 
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x = x0 + a cos( 8 + d * sin 13), 

z = &a sin( 0) 

with x0 = 2.75, a = 1.55, E = 2.0, d= 0.35. 
The surface quantities g($) and p($) are chosen to be 

where 

s(@)=gs+&- r, 

A$) = PO y2> 

Y= * edge -* 

* edge - *axis 
and g,/Ag = 10 -‘. 

The resulting safety factor q is 0.582 at the magnetic axis and 0.00419 at the edge, 
and the volume-averaged beta is 2.25 %. 

With no external conducting wall the fully converged growth rate is y2 = 0.50 c$, , 

where the AlfvCn transit frequency is defined as 

WA = BoIRo,/ii 

FIG. 3. Poloidal projection of the displacement vector, 5, for the spheromak tilting mode computed 
using the new PEST 2. 
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and R. = major radius, B, = toroidal field at the magnetic axis, and the density, pO, 
is assumed spatially constant. 

The poloidal projection of the displacement vector 5 is shown in Fig. 3. These 
results are in good agreement with results from the ERATO stability code [16]. 

4.4. Stable Shear A&ii& Wave 

In addition to the calculation of unstable perturbations, there is interest in modes 
in the stable part of the MHD spectrum. This is because the ability to compute the 
eigenfunctions can aid in our understanding of the instability driving mechanisms, 
and also because these stable oscillations are of interest for wave heating schemes. 
In the stable part of the spectrum there are both discrete modes and continuous 
bands of eigenfunctions associated with the shear AlfvCn branch. The global shear 
Alfven modes occur in cylindrical configurations [17, 181 and in a torus [18, 191, 
where additional discrete modes arise in the gaps between the continuum bands 
because of toroidal coupling of modes with different poloidal harmonics. 

Because of the large number of stable eigenvalues associated with any reasonably 
accurate numerical representation of linearized ideal MHD equations, computation 
of the global Alfven waves is complicated. One approach, which has been tried with 
PEST 1, entails calculation of all the eigenvalues of the discretized linear normal 
mode equations, using a wide resolution. By examining the radial structure of the 
eigenfunctions, it is possible to identity the discrete modes of interest. This gives an 
approximate eigenvalue estimate which can be used in an iterative eigenvalue 
scheme with more spatial resolution. Alternatively, an eigenvalue estimate can be 
obtained from a WKB local (ballooning mode) analysis of the problem, which 

FIG. 4. Radial structure of the Fourier harmonics of c* for a global Alfvbn mode. 
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FIG. 5. Poloidal projection of the displacement vector, 5, for the same global Alfvin mode of Fig. 4. 

determines the gaps between the shear Alfvtn wave continua surface by surface 
[20]. We consider an n = 1 internal mode in an aspect ratio 4 toroidal equilibrium, 
with /I N 2 % and 1.05 < q < 2.3. Using the approximation given from the localized 
analysis, we used the method of this paper to compute the global mode. The 
calculations were carried out with M = 48 and - 8 < 1~ 12. The radial structure of 
various Fourier harmonics is displayed in Fig. 4, and the poloidal projection of 5 is 
given in Fig. 5. The mode is seen to consist primarily of I= 1 and 2 components, 

0.4- 

0.3- 

0.2- 

-0.2- 

FIG. 6. Radial structure of the Fourier harmonics of tti for a mode in the Alfvtn continuum. 
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with a small coupling to I= 3 towards the plasma surface. In terms of the numerical 
calculation, the procedure behaves similarly to when it is used to compute unstable 
modes with respect to the number of iterations required, and no difficulties 
associated with inverting the operators in Eqs. (21) and (22) were observed. We 
also computed modes in the continuum, an example is given in Fig. 6. 

5. DISCUSSION 

In this paper we have described a numerical procedure which extends the efficient 
techniques of the PEST 2 stability code to enable an accurate estimate of the 
growth rates and eigenfunctions associated with the normal modes. The for- 
mulation followed that of PEST 2 in the reduction of 6 W to a quadratic form 
involving only one component of the displacement vector, but, by employing the 
correct kinetic energy normalization, the resulting eigenvalue problem was non- 
linear. Utilizing identical numerical procedures, the normal mode frequencies and 
eigenfunctions were obtained by a straightforward iteration. 

The numerical method was applied to several typical problems to illustrate the 
convergence properties and to make comparison with previous results. When 
implemented on a modern large scale computer (such as the CRAY l), these results 
show that sufficient resolution can be obtained and that careful convergence 
studies, which were essential with the first generation of stability codes, can now 
frequently be avoided. It was also shown that the method can be applied to deter- 
mine modes in the stable part of the MHD spectrum. 

For axisymmetric toroidal equilibria, the full range of features available with the 
extended PEST 2 formulation should provide for an accurate ideal MHD analysis 
of most interesting confinement systems with n 5 l&20. The improved efficiency of 
this scalar formulation will probably allow for an analogous examination of fully 
three-dimensional configurations, such as stellarators, where constraints imposed 
during the accurate calculation of MHD equilibria have the stability to low-n 
modes unresolved [21]. Finally, since the method does not rely implicity on the 
variational properties of the ideal MHD equations, the successful iteration for the 
eigenvalues demonstrated here suggests that similar techniques may be usefully 
applied to other toroidal systems, where the normal mode equations are not Her- 
mitean. This situation occurs when additional physics (such as equilibrium flows 
and various dissipative processes) is included to improve the ideal MHD descrip- 
tion of the confined plasma. 
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